Localized nodal solutions for semiclassical quasilinear Choquard equations with subcritical growth

dc.contributor.authorZhang, Bo
dc.contributor.authorLiu, Xiangqing
dc.date.accessioned2023-04-12T15:37:04Z
dc.date.available2023-04-12T15:37:04Z
dc.date.issued2022-02-10
dc.description.abstractIn this article, we study the existence of localized nodal solutions for semiclassical quasilinear Choquard equations with subcritical growth -ɛp Δpv + V(x)|v|p-2v = ɛα-N |v|q-2v ∫ℝN |v(y)|q/ |x - y|α dy, x ∈ ℝN, where N ≥ 3, 1 < p < N, 0 < α < min{2p, N - 1}, p < q < p*α, p*α = p(2N - α)/ 2(N - p), V is a bounded function. By the perturbation method and the method of invariant sets of descending flow, for small ɛ we establish the existence of a sequence of localized nodal solutions concentrating near a given local minimum point of the potential function V.
dc.description.departmentMathematics
dc.formatText
dc.format.extent29 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationZhang, B., & Liu, X. (2022). Localized nodal solutions for semiclassical quasilinear Choquard equations with subcritical growth. Electronic Journal of Differential Equations, 2022(11), pp. 1-29.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/16558
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2022, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectQuasilinear Choquard equation
dc.subjectNodal solutions
dc.subjectPerturbation method
dc.titleLocalized nodal solutions for semiclassical quasilinear Choquard equations with subcritical growth
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
zhang.pdf
Size:
449.17 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: