Infinitely many solutions for sublinear fractional Schrodinger-type equations with general potentials

dc.contributor.authorHou, Gang-Ling
dc.contributor.authorGe, Bin
dc.contributor.authorLu, Jian-Fang
dc.date.accessioned2022-02-02T14:47:11Z
dc.date.available2022-02-02T14:47:11Z
dc.date.issued2018-04-24
dc.description.abstractThis article concerns the fractional Schrödinger type equations (-∆)αu + V(x)u = ƒ(x, u) in ℝN, where N ≥ 2, α ∈ (0, 1), (-∆)α stands for the fractional Laplacian, V is a positive continuous potential, ƒ ∈ C(ℝN x ℝ, ℝ). We establish criteria that guarantee the existence of infinitely many solutions by using the genus properties in critical point theory.
dc.description.departmentMathematics
dc.formatText
dc.format.extent13 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationHou, G. L., Ge, B., & Lu, J. F. (2018). Infinitely many solutions for sublinear fractional Schrodinger-type equations with general potentials. Electronic Journal of Differential Equations, 2018(97), pp. 1-13.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/15264
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2018, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectFractional Laplacian
dc.subjectVariational method
dc.subjectSublinear
dc.subjectGenus
dc.titleInfinitely many solutions for sublinear fractional Schrodinger-type equations with general potentials
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
hou.pdf
Size:
250.25 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: