Nonlocal problem with moment conditions for hyperbolic equations

dc.contributor.authorIl'kiv, Volodymyr S.
dc.contributor.authorNytrebych, Zinovii
dc.contributor.authorPukach, Petro
dc.date.accessioned2022-08-17T15:16:01Z
dc.date.available2022-08-17T15:16:01Z
dc.date.issued2017-10-20
dc.description.abstractWe investigate a problem with nonlocal integral moment conditions with respect to the time variable for partial differential equation with constant coefficients. We obtain necessary and sufficient conditions for the existence of solutions in the class of periodic functions with respect to the spatial variables. For studying the asymptotic properties of this problem, we use only the partial integration formula and the length of the interval of integration.
dc.description.departmentMathematics
dc.formatText
dc.format.extent9 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationIl'kiv, V. S., Nytrebych, Z. M., & Pukach, P. Y. (2017). Nonlocal problem with moment conditions for hyperbolic equations. Electronic Journal of Differential Equations, 2017(265), pp. 1-9.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/16066
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectBoundary value problem
dc.subjectPartial differential equation
dc.subjectIntegral conditions
dc.subjectMoment-type conditions
dc.subjectSmall denominators
dc.titleNonlocal problem with moment conditions for hyperbolic equations
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ilkiv.pdf
Size:
226.95 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: