Existence of conjugacies and stable manifolds via suspensions

dc.contributor.authorBarreira, Luis
dc.contributor.authorDragicevic, Davor
dc.contributor.authorValls, Claudia
dc.date.accessioned2022-06-06T19:55:45Z
dc.date.available2022-06-06T19:55:45Z
dc.date.issued2017-07-07
dc.description.abstractWe obtain in a simpler manner versions of the Grobman-Hartman theorem and of the stable manifold theorem for a sequence of maps on a Banach space, which corresponds to consider a nonautonomous dynamics with discrete time. The proofs are made short by using a suspension to an infinite-dimensional space that makes the dynamics autonomous (and uniformly hyperbolic when originally it was nonuniformly hyperbolic).
dc.description.departmentMathematics
dc.formatText
dc.format.extent11 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationBarreira, L., Dragicevic, D., & Valls, C. (2017). Existence of conjugacies and stable manifolds via suspensions. <i>Electronic Journal of Differential Equations, 2017</i>(172), pp. 1-11.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/15865
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectConjugacies
dc.subjectNonuniform hyperbolicity
dc.subjectStable manifolds
dc.titleExistence of conjugacies and stable manifolds via suspensions
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
barreira.pdf
Size:
228.81 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: