Hydrodynamic Radii of Intrinsically Disordered Proteins Determined From Experimental Polyproline II Propensities




Tomasso, Maria E.
Tarver, Michael J.
Devarajan, Deepa
Whitten, Steven T.

Journal Title

Journal ISSN

Volume Title


Public Library of Science


The properties of disordered proteins are thought to depend on intrinsic conformational propensities for polyproline II (PPII) structure. While intrinsic PPII propensities have been measured for the common biological amino acids in short peptides, the ability of these experimentally determined propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs) has not been established. Presented here are results from molecular simulations of disordered proteins showing that the hydrodynamic radius (Rh) can be predicted from experimental PPII propensities with good agreement, even when charge-based considerations are omitted. The simulations demonstrate that Rh and chain propensity for PPII structure are linked via a simple power-law scaling relationship, which was tested using the experimental Rh of 22 IDPs covering a wide range of peptide lengths, net charge, and sequence composition. Charge effects on Rh were found to be generally weak when compared to PPII effects on Rh. Results from this study indicate that the hydrodynamic dimensions of IDPs are evidence of considerable sequence-dependent backbone propensities for PPII structure that qualitatively, if not quantitatively, match conformational propensities measured in peptides.



polyproline II, intrinsically disordered proteins, hydrodynamic radii, Chemistry and Biochemistry


Tomasso, M. E., Tarver, M. J., Devarajan, D., & Whitten, S. T. (2016). Hydrodynamic radii of intrinsically disordered proteins determined from experimental polyproline II propensities. PLoS Computational Biology, 12(1).


Rights Holder

© 2016 Tomasso et al.

Rights License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Rights URI