Jacobi-Maupertuis metric of Lienard type equations and Jacobi last multiplier

Date

2018-06-15

Authors

Chanda, Sumanto
Ghose-Choudhury, Anindya
Guha, Partha

Journal Title

Journal ISSN

Volume Title

Publisher

Texas State University, Department of Mathematics

Abstract

We present a construction of the Jacobi-Maupertuis (JM) principle for an equation of the Liénard type, ẍ + ƒ(x)ẋ2 + g(x) = 0, using Jacobi's last multiplier. The JM metric allows us to reformulate the Newtonian equation of motion for a variable mass as a geodesic equation for a Riemannian metric. We illustrate the procedure with examples of Painlevé-Gambier XXI, the Jacobi equation and the Henon-Heiles system.

Description

Keywords

Jacobi-Maupertuis metric, Position-dependent mass, Jacobi's last multiplier

Citation

Chanda, S., Ghose-Choudhury, A., & Guha, P. (2018). Jacobi-Maupertuis metric of Lienard type equations and Jacobi last multiplier. Electronic Journal of Differential Equations, 2018(120), pp. 1-9.

Rights

Attribution 4.0 International

Rights Holder

Rights License