Inverse problems for Sturm-Liouville operators with boundary conditions depending on a spectral parameter
dc.contributor.author | Sat, Murat | |
dc.date.accessioned | 2022-03-21T16:22:41Z | |
dc.date.available | 2022-03-21T16:22:41Z | |
dc.date.issued | 2017-01-24 | |
dc.description.abstract | In this article, we study the inverse problem for Sturm-Liouville operators with boundary conditions dependent on the spectral parameter. We show that the potential q(x) and coefficient α1λ+b1/ c1λ+d1 functions can be uniquely determined from the particular set of eigenvalues. | |
dc.description.department | Mathematics | |
dc.format | Text | |
dc.format.extent | 7 pages | |
dc.format.medium | 1 file (.pdf) | |
dc.identifier.citation | Sat, M. (2017). Inverse problems for Sturm-Liouville operators with boundary conditions depending on a spectral parameter. Electronic Journal of Differential Equations, 2017(26), pp. 1-7. | |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | https://hdl.handle.net/10877/15531 | |
dc.language.iso | en | |
dc.publisher | Texas State University, Department of Mathematics | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.source | Electronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas. | |
dc.subject | Inverse problem | |
dc.subject | Uniqueness theorem | |
dc.subject | Eigenvalue | |
dc.subject | Spectral parameter | |
dc.title | Inverse problems for Sturm-Liouville operators with boundary conditions depending on a spectral parameter | |
dc.type | Article |
Files
Original bundle
1 - 1 of 1