Inverse problems for Sturm-Liouville operators with boundary conditions depending on a spectral parameter

dc.contributor.authorSat, Murat
dc.date.accessioned2022-03-21T16:22:41Z
dc.date.available2022-03-21T16:22:41Z
dc.date.issued2017-01-24
dc.description.abstractIn this article, we study the inverse problem for Sturm-Liouville operators with boundary conditions dependent on the spectral parameter. We show that the potential q(x) and coefficient α1λ+b1/ c1λ+d1 functions can be uniquely determined from the particular set of eigenvalues.
dc.description.departmentMathematics
dc.formatText
dc.format.extent7 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationSat, M. (2017). Inverse problems for Sturm-Liouville operators with boundary conditions depending on a spectral parameter. Electronic Journal of Differential Equations, 2017(26), pp. 1-7.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/15531
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectInverse problem
dc.subjectUniqueness theorem
dc.subjectEigenvalue
dc.subjectSpectral parameter
dc.titleInverse problems for Sturm-Liouville operators with boundary conditions depending on a spectral parameter
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sat.pdf
Size:
196.47 KB
Format:
Adobe Portable Document Format
Description: