Positive solutions for superlinear Riemann-Liouville fractional boundary-value problems

dc.contributor.authorBachar, Imed
dc.contributor.authorMaagli, Habib
dc.contributor.authorRadulescu, Vicentiu
dc.date.accessioned2022-08-03T21:11:35Z
dc.date.available2022-08-03T21:11:35Z
dc.date.issued2017-10-04
dc.description.abstractUsing a perturbation argument, we establish the existence and uniqueness of a positive continuous solution for the following superlinear Riemann-Liouville fractional boundary-value problem Dαu(x) - u(x)ϕ(x, u(x)) = 0, 0 < x < 1, u(0) = u'(0) = limx→0+ x4-α u″(x) = 0, u″(1) = α > 0, where 3 < α ≤ 4 and ϕ(x, t) satisfies a suitable integrability condition.
dc.description.departmentMathematics
dc.formatText
dc.format.extent16 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationBachar, I., Mâagli, H., & Radulescu, V. D. (2017). Positive solutions for superlinear Riemann-Liouville fractional boundary-value problems. <i>Electronic Journal of Differential Equations, 2017</i>(240), pp. 1-16.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/16032
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectFractional differential equation
dc.subjectPositive solution
dc.subjectGreen's function
dc.subjectPerturbation
dc.subjectSchauder fixed point theorem
dc.titlePositive solutions for superlinear Riemann-Liouville fractional boundary-value problems
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bachar.pdf
Size:
268.78 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: