An existence result for elliptic problems with singular critical growth

dc.contributor.authorNasri, Yasmina
dc.date.accessioned2021-08-11T19:52:21Z
dc.date.available2021-08-11T19:52:21Z
dc.date.issued2007-06-06
dc.description.abstractWe prove the existence of nontrivial solutions for the singular critical problem -Δu - μ u/|x|2 = λƒ(x)u + u2*-1 with Dirichlet boundary conditions. Here the domain is a smooth bounded subset of ℝN, N ≥ 3, and 2* = 2N/N-2 which is the critical Sobolev exponent.
dc.description.departmentMathematics
dc.formatText
dc.format.extent6 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationNasri, Y. (2007). An existence result for elliptic problems with singular critical growth. Electronic Journal of Differential Equations, 2007(84), pp. 1-6.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/14279
dc.language.isoen
dc.publisherTexas State University-San Marcos, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2007, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectPalais-Smale condition
dc.subjectSingular potential
dc.subjectSobolev exponent
dc.subjectMountain-Pass Theorem
dc.titleAn existence result for elliptic problems with singular critical growth
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nasri.pdf
Size:
202.51 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: