Multiple solutions for quasilinear elliptic equations with sign-changing potential
Files
Date
2016-01-06
Authors
Wang, Ruimeng
Wang, Kun
Teng, Kaimin
Journal Title
Journal ISSN
Volume Title
Publisher
Texas State University, Department of Mathematics
Abstract
In this article, we study the quasilinear elliptic equation
-Δpu - (Δpu2)u + V(x)|u|p-2 u = g(x, u), x ∈ ℝN,
where the potential V(x) and the nonlinearity g(x, u) are allowed to be sign-changing. Under some suitable assumptions on V and g, we obtain the multiplicity of solutions by using minimax methods.
Description
Keywords
Quasilinear Schrödinger equation, Symmetric mountain pass theorem, Cerami condition
Citation
Wang, R., Wang, K., & Teng, K. (2016). Multiple solutions for quasilinear elliptic equations with sign-changing potential. <i>Electronic Journal of Differential Equations, 2016</i>(10), pp. 1-19.