Convergence of solutions of fractional differential equations to power-type functions
Date
2020-11-04
Authors
Kassim, Mohammed
Tatar, Nasser Eddine
Journal Title
Journal ISSN
Volume Title
Publisher
Texas State University, Department of Mathematics
Abstract
In this article we study the asymptotic behavior of solutions of some fractional differential equations. We prove convergence to power type functions under some assumptions on the nonlinearities. Our results extend and generalize some existing well-known results on solutions of ordinary differential equations. Appropriate estimations and lemmas such as a fractional version of L'Hopital's rule are used.
Description
Keywords
Asymptotic behavior, Boundedness, Fractional differential equation, Caputo fractional derivative, Riemann-Liouville fractional derivative
Citation
Kassim, M. D., & Tatar, N. E. (2020). Convergence of solutions of fractional differential equations to power-type functions. <i>Electronic Journal of Differential Equations, 2020</i>(111), pp. 1-14.