A note on a Liouville-type result for a system of fourth-order equations in RN

dc.contributor.authorDomingos, Ana Rute
dc.contributor.authorGuo, Yuxia
dc.date.accessioned2020-09-08T20:04:06Z
dc.date.available2020-09-08T20:04:06Z
dc.date.issued2002-11-27
dc.description.abstractWe consider the fourth order system Δ2u = vα, Δ2v = uβ in ℝN, for N ≥ 5, with α ≥ 1, β ≥ 1, where Δ2 is the bilaplacian operator. For 1/(α + 1) + 1 / (β + 1) > (N - 4) / N we prove the non-existence of non-negative, radial, smooth solutions. For α, β ≤ (N + 4) / (N - 4) we show the non-existence of non-negative smooth solutions.
dc.description.departmentMathematics
dc.formatText
dc.format.extent20 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationDomingos, A. R., & Guo, Y. (2002). A note on a Liouville-type result for a system of fourth-order equations in RN. <i>Electronic Journal of Differential Equations, 2002</i>(99), pp. 1-20.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/12539
dc.language.isoen
dc.publisherSouthwest Texas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2002, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectElliptic system of fourth order equations
dc.subjectMoving-planes
dc.titleA note on a Liouville-type result for a system of fourth-order equations in RN
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
domingos.pdf
Size:
306.07 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: