Bifurcations for Semilinear Elliptic Equations with Convex Nonlinearity

Date

1999-10-18

Authors

Karatson, Janos
Simon, Peter L

Journal Title

Journal ISSN

Volume Title

Publisher

Southwest Texas State University, Department of Mathematics

Abstract

We investigate the exact number of positive solutions of the semilinear Dirichlet boundary value problem Δu + ƒ(u) = 0 on a ball in Rn where ƒ is a strictly convex C2 function on [0,∞). For the one-dimensional case we classify all strictly convex C2 functions according to the shape of the bifurcation diagram. The exact number of positive solutions may be 2, 1, or 0, depending on the radius. This full classification is due to our main lemma, which implies that the time-map cannot have a minimum. For the case n > 1 we prove that for sublinear functions there exists a unique solution for all R. For other convex functions estimates are given for the number of positive solutions depending on R. The proof of our results relies on the characterization of the shape of the time-map.

Description

Keywords

Semilinear elliptic equations, Time-map, Bifurcation diagram

Citation

Karatson, J., & Simon, P. L. (1999). Bifurcations for semilinear elliptic equations with convex nonlinearity. Electronic Journal of Differential Equations, 1999(43), pp. 1-16.

Rights

Attribution 4.0 International

Rights Holder

Rights License