Exponential stability of traveling waves for non-monotone delayed reaction-diffusion equations

dc.contributor.authorLiu, Yixin
dc.contributor.authorYu, Zhixian
dc.contributor.authorXia, Jing
dc.date.accessioned2023-06-20T19:16:30Z
dc.date.available2023-06-20T19:16:30Z
dc.date.issued2016-03-29
dc.description.abstractThis article concerns the exponential stability of non-critical traveling waves (the wave speed is greater than the minimum speed) for non-monotone time-delayed reaction-diffusion equations. With the help of the weighted energy method, we prove that the non-critical travelling waves are exponentially stable when the initial perturbation around the wave is small.
dc.description.departmentMathematics
dc.formatText
dc.format.extent15 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationLiu, Y., Yu, Z., & Xia, J. (2016). Exponential stability of traveling waves for non-monotone delayed reaction-diffusion equations. Electronic Journal of Differential Equations, 2016(86), pp. 1-15.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/16958
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2016, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectStability
dc.subjectNon-monotone
dc.subjectWeighted energy method
dc.titleExponential stability of traveling waves for non-monotone delayed reaction-diffusion equations
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
liu.pdf
Size:
252.38 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: