Solitary waves for Maxwell-Schrödinger equations

dc.contributor.authorCoclite, Giuseppe Maria
dc.contributor.authorGeorgiev, Vladimir
dc.date.accessioned2021-04-26T18:43:33Z
dc.date.available2021-04-26T18:43:33Z
dc.date.issued2004-07-30
dc.description.abstractIn this paper we study solitary waves for the coupled system of Schrödinger-Maxwell equations in the three-dimensional space. We prove the existence of a sequence of radial solitary waves for these equations with a fixed L2 norm. We study the asymptotic behavior and the smoothness of these solutions. We show also that the eigenvalues are negative and the first one is isolated.
dc.description.departmentMathematics
dc.formatText
dc.format.extent31 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationCoclite, G. M., & Georgiev, V. (2004). Solitary waves for Maxwell-Schrodinger equations. <i>Electronic Journal of Differential Equations, 2004</i>(94), pp. 1-31.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/13448
dc.language.isoen
dc.publisherSouthwest Texas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2004, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectMaxwell-Schrodinger system
dc.subjectSolitary type solutions
dc.subjectVariational problems
dc.titleSolitary waves for Maxwell-Schrödinger equationsen_US
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
coclite.pdf
Size:
380.52 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: