Existence of attractors for the non-autonomous Berger equation with nonlinear damping
Files
Date
2017-11-08
Authors
Yang, Lu
Wang, Xuan
Journal Title
Journal ISSN
Volume Title
Publisher
Texas State University, Department of Mathematics
Abstract
In this article, we study the long-time behavior of the non-autonomous Berger equation with nonlinear damping. We prove the existence of a compact uniform attractor for the Berger equation with nonlinear damping in the space (H2(Ω) ∩ 10(Ω)) x L2(Ω).
Description
Keywords
Uniform attractor, Berger equation, Nonlinear damping
Citation
Yang, L., & Wang, X. (2017). Existence of attractors for the non-autonomous Berger equation with nonlinear damping. Electronic Journal of Differential Equations, 2017(278), pp. 1-14.
Rights
Attribution 4.0 International