Existence results for quasilinear elliptic systems in RN

dc.contributor.authorStavrakakis, N. M.
dc.contributor.authorZographopoulos, Nikolaos
dc.date.accessioned2019-11-22T16:44:36Z
dc.date.available2019-11-22T16:44:36Z
dc.date.issued1999-10-04
dc.description.abstractWe prove existence results for the quasilinear elliptic system -∆pu = λα(x)|u|γ-2u + λb(x)|u|α-1|v|β+1u, -∆qv = λd(x)|v|δ-2v + λb(x)|u|α+1|v|β-1v, where γ and δ may reach the critical Sobolev exponents, and the coefficient functions α, b, and d may change sign. For the unperturbed system (α = 0, b = 0), we establish the existence and simplicity of a positive principal eigenvalue, under the assumption that u(x) > 0, v(x) > 0, and lim|x|→∞ u(x) = 0.
dc.description.departmentMathematics
dc.formatText
dc.format.extent15 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationStavrakakis, N. M., & Zographopoulos, N. B. (1999). Existence results for quasilinear elliptic systems in RN. <i>Electronic Journal of Differential Equations, 1999</i>(39), pp. 1-15.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/8877
dc.language.isoen
dc.publisherSouthwest Texas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 1999, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectp-Laplacian
dc.subjectNonlinear eigenvalue problems
dc.subjectHomogeneous Sobolev spaces
dc.subjectMaximum principle
dc.subjectPalais-Smale Condition
dc.titleExistence results for quasilinear elliptic systems in RN
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1999-Stavrakakis-Zographopoulos.pdf
Size:
241.06 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: