An Epsilon-regularity result for Generalized Harmonic Maps into Spheres

dc.contributor.authorMoser, Roger
dc.date.accessioned2020-09-10T18:41:37Z
dc.date.available2020-09-10T18:41:37Z
dc.date.issued2003-01-02
dc.description.abstractFor m, n ≥ 2 and 1 < p < 2, we prove that a map u ∈ W1,p loc (Ω, Sn-1) from an open domain Ω ⊂ ℝm into the unit (n - 1)-sphere, which solves a generalized version of the harmonic map equation, is smooth, provided that 2 - p and [u] BMO(Ω) are both sufficiently small. This extends a result of Almeida [1]. The proof is based on an inverse Hölder inequality technique.
dc.description.departmentMathematics
dc.formatText
dc.format.extent7 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationMoser, R. (2003). An epsilon-regularity result for generalized harmonic maps into spheres. <i>Electronic Journal of Differential Equations, 2003</i>(01), pp. 1-7.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/12568
dc.language.isoen
dc.publisherSouthwest Texas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2003, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectGeneralized harmonic maps
dc.subjectRegularity
dc.titleAn Epsilon-regularity result for Generalized Harmonic Maps into Spheres
dc.title.alternativeAn ∈-regularity result for Generalized Harmonic Maps into Spheres
dc.typeArticle

Files