A spatially periodic Kuramoto-Sivashinsky equation as a model problem for inclined film flow over wavy bottom

Date
2007-09-06
Authors
Uecker, Hannes
Wierschem, Andreas
Journal Title
Journal ISSN
Volume Title
Publisher
Texas State University-San Marcos, Department of Mathematics
Abstract
The spatially periodic Kuramoto-Sivashinsky equation (pKS) ∂tu = -∂4xu - c3∂3xu - c2∂2xu + 2δ∂x (cos(x)u) - ∂x(u2), with u(t, x) ∈ ℝ, t ≥ 0, x ∈ ℝ, is a model problem for inclined film flow over wavy bottoms and other spatially periodic systems with a long wave instability. For given c2, c3 ∈ ℝ and small δ ≥ 0 it has a one dimensional family of spatially periodic stationary solutions us (⋅; c2, c3, δ, um), parameterized by the mass u<sub>m</sub> = 1/2π ∫2π0 us(x) dx. Depending on the parameters these stationary solutions can be linearly stable or unstable. We show that in the stable case localized perturbations decay with a polynomial rate and in a universal non-linear self-similar way: the limiting profile is determined by a Burgers equation in Bloch wave space. We also discuss linearly unstable us, in which case we approximate the pKS by a constant coefficient KS-equation. The analysis is based on Bloch wave transform and renormalization group methods.
Description
Keywords
Inclined film flow, Wavy bottom, Burgers equation, Stability, Renormalization
Citation
Uecker, H., & Wierschem, A. (2007). A spatially periodic Kuramoto-Sivashinsky equation as a model problem for inclined film flow over wavy bottom. <i>Electronic Journal of Differential Equations, 2007</i>(118), pp. 1-18.